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 ABSTRACT  

This study investigates optimizing energy exchanges between two prosumers—entities that 

both produce and consume energy—equipped with renewable energy sources, loads, and 

storage. Leveraging a Model Predictive Control (MPC) framework, the system balances energy 

production and consumption, reducing dependency on the grid while promoting higher 

renewable energy utilization. The MPC method integrates future forecasts of renewable supply 

and demand, enabling real-time, proactive management of energy flows and promoting efficient 

usage of available resources. At each control interval, the MPC evaluates data and forecasts to 

optimize energy dispatch between renewable sources, batteries, and loads, as well as manage 

surplus energy exchanges between prosumers, reducing waste and increasing efficiency. This 

coordination led to an increase in renewable penetration from 71% to 84% in simulations, 

demonstrating the advantages of prosumer cooperation in meeting variable energy demands. 

The framework’s flexibility also enables response to renewable variability, such as solar 

intermittency, and can be expanded to include larger prosumer networks or additional storage, 

enhancing grid resilience. Ultimately, this research underscores MPC's potential in fostering 

efficient, sustainable, and flexible distributed energy systems by optimizing energy exchanges, 

increasing renewable penetration, and reducing grid dependency. 

flexibly to the variability of renewable energy sources. This can be particularly beneficial in 

scenarios where renewable generation is intermittent, such as with solar panels during cloudy 

periods or wind turbines during calm weather. Moreover, the MPC-based control system could 

easily be expanded to accommodate a larger network of prosumers or additional energy storage 

solutions, further enhancing the grid’s resilience and renewable energy utilization. 

In summary, this research highlights the potential of MPC-based control systems for 

optimizing energy exchanges between prosumers, improving renewable energy penetration, and 

reducing dependence on conventional grid power. By coordinating renewable energy flows and 

energy storage usage, this approach paves the way for more efficient, sustainable, and flexible 

distributed energy systems in the future. 
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1. INTRODUCTION 

Figure 1 illustrates a block-diagram representation of the Model Predictive Control (MPC) 

system, showcasing its operational framework. In this setup, the core component is a process 

model that predicts future system outputs by analyzing historical inputs and outputs. Based on 

these predictions, the MPC generates optimized control signals for the system's future 

operation. The optimization process within the MPC takes into account various constraints, 

such as system limitations and operational boundaries, and works toward an objective function 

that defines the desired performance outcomes, like minimizing energy costs or maximizing 

renewable energy utilization. 

One of the key elements of the MPC is its ability to track a reference trajectory, which 

represents the ideal behavior or performance target for the system. The MPC continuously 

evaluates the difference between the predicted outputs from the process model and this 

reference trajectory, adjusting the control signals to bring the system closer to the target. This 

closed-loop approach allows the MPC to make dynamic, real-time decisions that adapt to 

changing conditions, such as fluctuations in renewable energy supply or shifts in energy 

demand. 

The effectiveness and precision of the MPC algorithm are directly influenced by the accuracy 

of the process model it relies upon. If the model can accurately forecast future conditions—such 

as solar irradiance or wind speeds in a renewable energy system—the control decisions will be 

more effective in optimizing the system's performance. Conversely, inaccuracies in the model 

can lead to suboptimal control actions, which may reduce the efficiency of energy dispatch or 

lead to greater reliance on grid power. Therefore, the development and fine-tuning of the 

process model play a critical role in the success of the MPC strategy. 

By integrating these predictive capabilities with real-time control, the MPC framework offers 

a robust approach to managing complex energy systems, especially in environments with 

variable renewable energy sources. It ensures that energy flows are optimized while respecting 

system constraints, leading to enhanced performance, lower operational costs, and higher 

renewable energy utilization. [1]. 

 

 
Figure 1: General MPC control flow 

 

2.   PROBLEM FORMULATION 

    Figure 2 provides a detailed depiction of the primary components of the two 

interconnected prosumers analyzed in this study, alongside the power flow pathways 

between them. These prosumers are each equipped with renewable energy generation, 

battery storage systems, and their respective loads. The Model Predictive Control (MPC) 

algorithm is engineered to optimize energy dispatch between the two prosumers, aiming to 
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maximize the consumption of locally generated renewable power while minimizing reliance 

on external energy sources, such as the broader electrical grid or other retail energy 

providers. By minimizing energy exchanges with external networks, the MPC strives to 

achieve greater energy independence for the two prosumers. Essentially, it works to isolate 

their operations, ensuring that most, if not all, of their energy demands are met through 

locally generated renewable energy and stored battery power. This strategic isolation helps 

reduce energy trading costs, grid dependency, and ensures more efficient use of renewable 

resources, even under variable production conditions. 

   The remainder of the study breaks down the components of the MPC problem, beginning 

with a detailed battery storage model that describes how energy is stored and retrieved in 

each prosumer's battery system. The state-space formulation follows, defining the 

mathematical framework through which the system's dynamics are modeled and controlled. 

This provides a systematic way of representing both the energy flows and the decision-

making process within the MPC. 

   Next, the objective function is established, which serves as the guiding principle for the 

MPC. The function is designed to prioritize the use of renewable energy, minimize external 

energy purchases, and optimize battery utilization. At the same time, it incorporates key 

performance metrics such as cost savings, energy efficiency, and renewable penetration. 

   The MPC algorithm also incorporates a reference trajectory, which is based on 

forecasted information regarding future energy demand and renewable energy production. 

These forecasts play a crucial role in shaping the control strategy, as they allow the MPC to 

make proactive, rather than reactive, decisions about energy flows. Accurate predictions 

enable better alignment of renewable energy generation with consumption, further reducing 

reliance on external energy. 

   Finally, all system constraints are defined, including physical limitations like battery 

capacity, load demands, and renewable generation variability. The MPC must operate 

within these boundaries, ensuring that while it seeks to optimize performance, it does so 

without exceeding the system’s inherent limits. These constraints ensure realistic and 

feasible solutions within the modeled energy system. 

 

 
 

Figure 2: Coupled microgrid block diagram with two prosumers. Energy transfers 

between elements are simulated on an hourly basis, according to MPC algorithm that 

maximizes Energy penetration. 
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3.   MPC OBJECTIVE FUNCTION and REFERENCE TRAJECTORY 

 

   The primary objective of the control system is to minimize the reliance on backup energy 

sources while maximizing the consumption of renewable energy directly by the load. 

Although the use of battery or thermal storage is necessary to balance supply and demand, it 

should be minimized to reduce energy losses and mitigate the impact on the longevity of the 

storage systems. The following equation outlines the comprehensive objective that the 

control system seeks to minimize, serving as a foundation for developing the state-space 

representation. 

 

J = ∑  𝑇
𝐾=0 {  𝐶1

2
  [P1R (k) + P1C (k)]2   𝐶2

2
  [P3R (k) + P3C (k)+P4R(k)+P4C (k)]2 +  𝐶3

2
  [PRC (k) + 

 

 PCR (k)]2 +  𝐶4
2

 [PRC (k) + PCR (k)]2+  𝐶5
2

 [PRER R (k) – P2R (k)+P3R(k)-PRC (k)]2 +  𝐶5
2

 [PRER C 

 

 (k) – P2C (k)+P3C(k)-PCR (k)]2} ………………….. (1) 

 

   At each time step, the Model Predictive Control (MPC) objective function is calculated by 

summing all 10 components listed in Table 1. This function anticipates future energy 

demands over a defined time horizon, denoted by 𝑁𝑃, and aggregates energy-related terms 

across a specified time interval at 𝑇. 

 

 

Table 1: System outputs and objective terms 

 
 

The following equation and definitions are used to recursively update these energy levels. 

 

Xm (k) = Xm (k-1)+bm u(k-1)……………...... (2) 

https://tu.edu.ly/


TUJES. Open Access. LRN 293-2022                                                        Available at www.tu.edu.ly                                                 5 

 

 

u(k) = [P2R,   P2C,   P3R, P3C,  P4R, P4C, PRC, PCR, PBRC, PBCR ]T……………...(3) 

 

bm =[
𝟎 𝟎 𝜼𝒄 𝟎 −𝜼𝑫 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝜼𝒄 𝟎 −𝜼𝑫 𝟎 𝟎 𝟎 𝟎

] 

 

state-space model and Reference Trajectory 

 

x ( k +1 ) =Ax(k)+ Bu(k)…………………(4) 

y (k) = Cx(k)………………………………(5) 

 

 
 

 
 

R = [C1 PLR (k), C1 PLc (k), C5 PRER R (k) C5 PRER C (k)..... C1 PLR (k +Np|k ), C1c (k+Np| k), 

C5 PRER R (k +Np|k ), C5 PRER c (k +Np|k )]….(6)  

 

 

4.  RESULTS 

   Figure 3 The figure below presents the monthly total energy exchanged between the 

paired prosumers, highlighting the flow of energy across different seasons. It illustrates a 

noticeable seasonal variation, where a greater amount of energy is transferred from the 

residential prosumer to the commercial prosumer during the summer months, compared to 

the winter. This seasonal disparity can be attributed to higher energy demand in the 

commercial sector during the warmer months, potentially due to increased cooling 

requirements, while residential loads may experience a reduction during this period. 

Conversely, during the winter, energy transfers are more balanced or may even shift, as 

residential heating demands increase, influencing the dynamic between the two prosumers. 
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Figure 3: Monthly total energy transfers between the two prosumers. 

 

 
Figure 4: Average daily energy transfers between the two prosumers 

 

     After running both algorithms for an entire year, it becomes feasible to derive summary 

performance metrics such as renewable energy penetration and curtailment levels. The 

findings for these metrics are presented in Table 2, which provides a comparative analysis 

of the results obtained from paired versus unpaired Model Predictive Control (MPC) 

operations. When the two prosumers operate independently (unpaired), the overall 

percentage of their energy loads satisfied by renewable energy resources (RER) is recorded 

at 75%. In contrast, when these loads are paired together, this percentage significantly rises 

to 86%. This increase in renewable energy utilization underscores the advantages of 
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coordinated energy management between the prosumers, illustrating how effective load 

sharing can enhance overall renewable penetration and optimize energy use. 

 

Table 2: Performance for both operating modes 

 
 

    Figure 5 The following graphs depict the average daily performance of both prosumers 

over the entire year, focusing on the surplus of renewable energy resources (RER). This 

surplus is calculated by subtracting the energy load from the energy production of each 

prosumer. The plots clearly illustrate the periods during which each prosumer experiences a 

surplus—indicating that their RER output exceeds their energy demands—as well as the 

intervals when they face a deficit, characterized by a shortfall in energy production relative 

to their load requirements. These visualizations provide valuable insights into the energy 

dynamics of the prosumers, highlighting not only their renewable energy production 

patterns but also the times when energy management strategies may be necessary to address 

the gaps in energy supply. 

 

 
Figure 5: Average daily energy from external prosumers to both prosumers. 

 

      Figure 6 and Figure 7 presents illustrative examples of the demand and supply profiles 

for both residential and commercial systems. Each subplot features a vertical line that marks 

the current time, denoted as 𝑘. 
k, which corresponds to midnight. To the left of this line, one can observe a day’s worth of 

historical data, showcasing the actual demand and supply trends leading up to the present 
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moment. Conversely, to the right of the vertical line lies a day of forecasted values, 

depicting projected demand and supply patterns for the immediate future. 

   Additionally, the graph includes actual future load and supply data, which would typically 

be unavailable in a real-world scenario, to highlight the discrepancies that can occur 

between forecasted and actual values. This comparison emphasizes the potential for 

forecasting errors, providing a comprehensive view of how demand and supply dynamics 

can fluctuate and the challenges associated with accurately predicting energy needs. 

predicting energy needs. 

 

 
Figure 6: Two days of Residential demand and supply profiles used in simulation. 

 

 
Figure7: Two days of Commercial demand and supply profiles used in simulation. 
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5.   CONCLUSIONS 

   This research underscores the substantial benefits of employing a Model Predictive 

Control (MPC) framework to enhance the efficiency of energy exchanges between two 

prosumers, each possessing its own renewable energy generation capabilities and battery 

storage systems. Previous studies primarily focused on optimizing energy management 

within a single prosumer's system. In contrast, this work introduces a cohesive MPC 

dispatch algorithm designed to simultaneously manage all internal energy flows of the 

paired prosumers, as well as the shared energy transactions that occur between them. 

   The integration of two distinct prosumers allows for a more dynamic interaction, 

capitalizing on the variability in their respective supply and demand profiles. As a result, 

this collaborative approach leads to a notable increase in renewable energy penetration 

when compared to scenarios where each prosumer operates independently. The case study 

presented features a residential prosumer paired with a commercial prosumer, illustrating 

the practical advantages of this synergistic model. 

   The MPC framework leverages advanced predictive analytics to anticipate fluctuations in 

both energy supply and demand, thereby enabling proactive management of the battery 

storage systems. By ensuring that batteries are discharged during periods of expected 

surplus and charged prior to anticipated demand peaks, the algorithm optimizes energy 

utilization, minimizes reliance on external grid sources, and reduces overall operational 

costs. 

   Moreover, the findings indicate that renewable energy penetration could be further 

enhanced by expanding the MPC strategy to include additional prosumers within the energy 

network. However, the complexity of the current MPC formulation presents challenges in 

scalability, particularly as the number of variables increases with each added prosumer. One 

viable strategy for addressing these scalability challenges could involve limiting the MPC 

application to manage only the shared energy flows between prosumers, while allowing    

each prosumer to independently manage its internal energy dynamics. 

   This approach would not only simplify the optimization process but also maintain the 

advantages of cooperative energy management, ultimately leading to a more resilient and 

sustainable energy ecosystem. Future research could explore the potential for implementing 

this hybrid approach, as well as its implications for broader energy markets and policies 

aimed at promoting decentralized renewable energy generation. 

   In conclusion, the utilization of MPC in managing energy exchanges between prosumers 

presents a promising pathway for maximizing renewable energy use, enhancing system 

reliability, and fostering a more sustainable energy future. By continuing to refine and 

expand this approach, we can better support the transition toward a decentralized energy 

landscape that benefits both consumers and producers alike. 
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