Microwave Irradiation Aided Transesterification for Biodiesel Synthesis via Heterogeneous Catalysts

Authors

  • Abdulaziz Mohamed Tobruk University, Faculty of Engineering, Chemical Engineering Development Author

DOI:

https://doi.org/10.64516/yn799h39

Keywords:

Transesterification, free fatty acid, microwaves, heterogenous, impregnation

Abstract

This review paper has examined, though not exhaustively, the synthesis of biodiesel through the transesterification reaction of non-edible and waste oils utilizing chemically-based heterogeneous catalysts activated by microwave irradiation. The production of biodiesel from such feedstock oils can significantly enhance the commercialization of biodiesel, as it presents a cost-effective alternative to fresh edible oils, thereby lowering raw material expenses. Another potential reduction in costs may stem from employing heterogeneous catalysts alongside microwave heating, which utilizes less energy and necessitates a shorter transesterification reaction time, exhibiting improved reaction kinetics without compromising the overall yield of biodiesel, in contrast to traditional heating methods. The findings from the reviewed studies indicate that microwave heating may surpass conventional heating in all assessed parameters, despite the more controlled reaction conditions associated with the former. It has also been observed that the acceleration of the transesterification reaction via microwave heating cannot be directly compared to that achieved through conventional heating under otherwise identical conditions. Moreover, microwave assisted heterogeneously catalyzed transesterification reactions are distinguished by the emergence of hot spots, superheating, and selective heating of particular species. These phenomena improve the efficiency of the heating process, resulting in a higher rate of transesterification while minimizing the generation of by-products. The efficacy of heterogeneous catalysts in facilitating transesterification reactions is remarkable, showcasing high reactivity, stability, and selectivity when integrated with microwave technology.

References

[1] F. Jalal, P. S. Ilavarasi and L. R. Miranda, 2011 IEEE Conference on Clean Energy and Technology (CET), (2011) 125-128.

[2] Encinar JM, Pardal A, Sánchez N, Nogales S. Energies, 11 (2018) 2229.

[3] Meher L. C, Dharmagadda V. S., Naik S. N. Bioresour Technol. 12 (2006) 1392-1397.

[4] George Anastopoulos, Ypatia Zannikou, Stamoulis Stournas and Stamatis Kalligeros. Energies 2 (2009) 362-376.

[5] P. M. Ejikeme, I. D. Anyaogu, C. L. Ejikeme, N. P. Nwafor, C. A. C. Egbuonu, K. Ukogu and J. A. Ibemesi, E-Journal of Chemistry, 7 (2010) 1120-1132.

[6]. Shakorfow, A. and Mohamed, A. International Science and Technology Journal, 2020a, Vol.21, 186- 225.

[7] Shakorfow, A. and Mohamed, A. Acta Chemica Malaysia, 2020b, Vol.4 (Issue 2), pp. 76-85.

[8] Shakorfow, A. and Mohamed, Journal of Academic Research (Applied Sciences), 2020c, Vol. 16, pp. 6-11.

[9] Shakorfow A. and Daribi, E. Acta ChemicaMalaysia, 2022, Vol.6 (Issue 1), pp. 12-19.

[10] Kamaruddin, M. J., N. Mohamad, U. A. Asli, M. A. Ahmad Zaini, K. Kidam, and M. H. Hassim.. Jurnal Teknologi. 2016; vol. 78, no. 8-30.

[11] Nomanbhay, Saifuddin, and Mei Yin Ong. Bioengineering (Basel, Switzerland) vol. 4,2 57. 15 Jun. 2017.

[12] Pranjali D. Muley, Yuxin Wang, Jianli Hu and Dushyant Shekhawat. ''Microwave-Assisted Heterogenous Catalysis''. Specialist Periodical Reports. Catalysis: Volume 33, edited by: James Spivey, Yi- Fan Han and Dushyant Shekhawat. 2021, pp. 1-37.

[13] Kumar R, Sethy AK. Journal of Forest and Environmental Science. 2015;28;31(1):1–6.

[14] Behzad Khedri, Mostafa Mostafaei and Seyed Mohammad Safieddin Ardebili.. 2019; 41:19, 2377-2395.

[15] Moina Athar, Sameer Imdad, Sadaf Zaidi, Mohammad Yusuf, Hesam Kamyab, Jiří Jaromír Klemeš, Shreeshivadasan Chelliapan, Fuel. 2022, Volume 322, 124205.

[16] Yuan-Chung Lin, Kassian T.T. Amesho, Chin-En Chen, Pei-Cheng Cheng, Feng-Chih Chou. Sustainable Chemistry and Pharmacy. 2020, Volume 17,100310.

[17] Barham, J.P., Koyama, E., Norikane, Y., Ohneda, N., Yoshimura, T. Chem. Rec., 2019, 19, 188–203.

[18] Stankiewicz, A., Sarabi, F.E., Baubaid, A., Yan, P., Nigar, H. Chem. Rec. 2019, 19, 40–50.

[19] Surati, Madhvi A., Smita Jauhari and Kishor Ratilal Desai. Archives of Applied Science Research 4, 2012: 645-661.

[20] Sun, J.; Wang, W.; Yue, Q. Materials 2016a, 9, 1-25.

[21] Mohammad Kord; Seyed Mojtaba Sadrameli; Barat Ghobadian. Journal of Renewable Energy and Environment, 3, 4, 2016, 1-9.

[22] Yuan H, Yang B, Zhang H, Zhou X.. International Journal of Chemical Reactor Engineering. 2011;9(1).

[23] Zhang, S.; Zu, Y.-G.; Fu, Y.-J.; Luo, M.; Zhang, D.-Y.; Efferth, T. Bioresource technology vol. 101,3, 2010: 931-6.

[24] Hsiao, M.-C.; Lin, C.-C.; Chang, Y.-H.. Fuel, 2011, 90, 1963–1967. [25] Patil, P.; Gude, V.G.; Pinappu, S.; Deng, S. Chem. Eng. J. 2011, 168, 1296–1300.

[26] Kumar R, Kumar GR, Chandrashekar N. Bioresour Technol., 2011 Jun;102(11):6617-6620.

[27] H. Venkatesh Kamath, I. Regupathi, M.B. Saidutta.. Fuel Processing Technology, 2011, 92, 100-105.

[28] A.S. Silitonga, A.H. Shamsuddin, T.M.I. Mahlia, Jassinne Milano, F. Kusumo, Joko Siswantoro, S. Dharma, A.H. Sebayang, H.H. Masjuki and Hwai Chyuan Ong. Renewable Energy, 2020, vol. 146, issue C, 1278-1291.

[29] Lin, Jar-Jin, and Yu-Wen Chen. Journal of the Taiwan Institute of Chemical Engineers, vol. 75, June 2017, pp. 43–50.

[30] Venkatesh Kamath, I Regupathi & MB Saidutta. Biofuels, 2010, 1:6, 847-854.

[31] Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Mantegna, S.; Cravotto, G. Renew. Energy 2015, 83, 25–29.

[32] Gupta, A.R.; Rathod, V.K. Renew. Energy 2018, 121, 757–767.

[33] Chen, K., Lin, Y., Hsu, K., & Wang, H. Energy 2012, 38, 151-156.

[34] Hsiao, M.C., Kuo, J., Hsieh, S., Hsieh, P., & Hou, S.S. Fuel 2020, 266, 117114.

[35] Hsiao, M.-C.; Liao, P.-H.; Lan, N.V.; Hou, S.-S. Energies 2021, 14, 437.

[36] Fatimah, I.; Rubiyanto, D.; Nugraha, J.. Sustain. Chem. Pharm. 2018, 8, 63–70.

[37] Liao, C.-C.; Chung, T.-W. Chem. Eng. Res. Des. 2013, 91, 2457–2464.

[38] Ye, B.; Qiu, F.; Sun, C.; Li, Y.; Yang, D. Chem. Eng. Technol. 2014, 37, 283–292.

[39] Varol, P.M.; Çakan, A.; Kiren, B.; Ayas, N. Biomass Conv. Bioref., 2021, 1–13.

[40] Wahidin, S.; Idris, A.; Yusof, N.M.; Kamis, N.H.H.; Shaleh, S.R.M. Energy Convers. Manag., 2018, 171, 1397–1404.

[41] Drago, C.; Liotta, L.F.; La Parola, V.; Testa, M.L.; Nicolosi, G. Fuel, 2013, 113, 707–711.

[42] Fatimah, Is, and Septian P. Yudha. Energy Procedia, vol. 105, May 2017, pp. 1796–805.

[43] Sharma, A.; Kodgire, P.; Kachhwaha, S.S. Renew. Sustain. Energy Rev., 2019, 116, 109394.

[44] Majewski, M.W.; Pollack, S.A.; Curtis-Palmer, V.A. Tetrahedron Lett., 2009, 50, 5175–5177.

[45] Perin, G.; Álvaro, G.; Westphal, E.; Viana, L.; Jacob, R.; Lenardão, E.; D’Oca, M. Fuel, 2008, 87, 2838–2841.

[46] Mazzocchia, C.; Modica, G.; Kaddouri, A.; Nannicini, R.. C. R. Chim., 2004, 7, 601–605.

[47] Liu, W.; Yin, P.; Liu, X.; Chen, W.; Chen, H.; Liu, C.; Qu, R.; Xu, Q. Energy Convers. Manag, 76 (2013) 1009–1014.

[48] Lawan, I.; Garba, Z.N.; Zhou, W.; Zhang, M.; Yuan, Z. Renew. Energy, 145 (2020) 2550–2560.

[49] Loy, A.C.M.; Quitain, A.T.; Lam, M.K.; Yusup, S.; Sasaki, M.; Kida, T. Energy Convers. Manag, 180 (2019) 1013–1025.

[50] Jin, Lei, Zhang, Yashan, Dombrowski, James, Chen, Chunhu, Provatas, Anthony, Xu, Linping, Perkins, Christopher, and Suib, Steven. 2011.

[51] Yee, K. F., Lee, K. T., Ceccato, R., Abdullah, A. Z. Bioresource technology, 102 (2011) 4285-9.

[52] Muthu, H., Selvabala, V.S, Varathachary, T. K., Selvaraj, D.K, Nandagopal, J., Subramanian. Brazilian Journal of Chemical Engineering, 27 (2010) 601–8.

[53] Tumba K, Jiyane PC and Musonge P. Front. Energy Res. 9 (2021) 646229.

[54] Shi, W., He, B., Ding, J., Li, J., Yan, F., Liang, X. Bioresource Technology, 101 (2010) 1501–5.

[55] Kulkarni, M. G., Gopinath, R., Meher, L. C., Dalai, A. K. Green Chemistry, 8 (2006) 1056.

[56] Soriano Jr., N.U., Venditti, R., Argyropoulos, D. S. Fuel, 88 (2009) 560–65.

[57] Sutrisno, B., Muhammad, A., Zikriani, G., Hidayat, A. Key Engineering Materials, 872 (2021) 91–95.

[58] Hartono, R., Wijanarko, A., Hermansyah, H. IOP Conf. Series: Materials Science and Engineering, 345 (2018) 012002.

[59] Brito, A., Borges, M., Otero, N. Energy & Fuels, 21 (2007) 3280–83.

[60] Richard N. Gedye, Frank E. Smith, and Kenneth Charles Westaway. (2017) 17-26.

[61] Patil, P.D.; Gude, V.G.; Reddy, H.K.; Muppaneni, T.; Deng, S. Journal of Environmental Protection, 3 (2012) 107–13.

[62] Gude, V.; Patil, P.; Martinez-Guerra, E.; Deng, S.; Nirmalakhandan, N. Sustainable Chemical Processes, 1 (2013) 5.

[63] N. Haneishi , S. Tsubaki , E. Abe , M. M. Maitani , E.-i. Suzuki , S. Fujii , J. Fukushima , H. Takizawa and Y. Wada. Scientific Reports, 9, (2019).

[64] J. Sun, W. Wang, Q. Yue, C. Ma, J. Zhang, X. Zhao and Z. Song. Applied Energy, 175 (2016b) 141–157.

[65] T. Musho, C. Wildfire, N. Houlihan, E. M. Sabolsky and D. Shekhawat, Materials Chemistry and Physics, 216 (2018) 278-284.

Downloads

Published

01-06-2025

Issue

Section

Articles

How to Cite

[1]
A. Mohamed, “Microwave Irradiation Aided Transesterification for Biodiesel Synthesis via Heterogeneous Catalysts”, TUJES, vol. 6, no. 1, pp. 1–13, Jun. 2025, doi: 10.64516/yn799h39.