Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography-Angiography in Diabetic Patients

Authors

  • Managi Soliman Ophthalmology Department, Benghazi University, Benghazi Author
  • Mariam Gebri Ophthalmology Department, Benghazi University, Benghazi Author

DOI:

https://doi.org/10.64516/8reydr13

Keywords:

Optical Coherence Tomography, Optic Disc, Macular Vascular-Diabetic Retinopathy

Abstract

Introduction: Diabetes mellitus is a global epidemic, affecting millions of individuals and posing substantial challenges to public health worldwide. Beyond its systemic impact, diabetes gives rise to a myriad of complications, with diabetic retinopathy (DR) emerging as a primary cause of visual impairment and blindness, particularly among the working-age population. DR is a progressive microvascular complication characterized by alterations in the retinal vasculature that can lead to severe vision loss if left untreated. The optic disc and macula, critical components of the retina, are particularly susceptible to these vascular changes, making their comprehensive evaluation imperative for understanding the trajectory of diabetic retinopathy. Optical Coherence Tomography-Angiography (OCT-A) has made it possible to assess and measure early microvascular damage in diabetes, such as capillary nonperfusion and ischemia. While various factors alter the vascular tissue's shape, little is known about how the ocular, systemic, and demographic aspects of diabetes patients affect OCT-A metrics. The study aims to assess the capabilities of Optical Coherence Tomography Angiography (OCTA) to comprehensively investigate optic disc and macular vascular changes in diabetic patients.

Materials and methods: Eighteen, 11 Type 1 and 7 Type 2 diabetic patients with or without prior ocular pathology and eight matching healthy individuals were recruited from the clinics at Tobruk Medical Centre. Clinical refractometry, fundus examinations, and imaging by OCT were performed.

Results: The foveal thickness was not statistically significant among the studied groups (p =.275), but the central foveal thickness showed a statistical difference among the studied groups (p =.043). Intergroup pairwise comparison revealed that the proliferative diabetic retinopathy (PDR) group had statistically significantly lower central foveal thickness than the severe DR group (p =.045).

Conclusion: Different OCT measurements, including focal thickening, may be useful for the early detection of macular thickening and may be indicators for a closer follow-up for diabetic patients.

References

1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(Th) Edition. Diabetes Res Clin Pract 2019;157:107843.

2. Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012;35(3):556-64.

3. Sun Z, Tang F, Wong R, Lok J, Szeto SKH, Chan JCK, et al. Oct Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema: A Prospective Study. Ophthalmology 2019;126(12):1675-84.

4. Cunha-Vaz J, Ribeiro L, Lobo C. Phenotypes and Biomarkers of Diabetic Retinopathy. Progress in retinal and eye research 2014;41:90-111.

5. Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, et al. Quantitative Optical Coherence Tomography Angiography of Vascular Abnormalities in the Living Human Eye. Proceedings of the National Academy of Sciences 2015;112(18): E2395-E402.

6. Spaide RF, Klancnik JM, Cooney MJ. Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography. JAMA ophthalmology 2015;133(1):45- 50.

7. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, et al. Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study. American journal of ophthalmology 2015;160(1):35-44. e1.

8. Stanga PE, Papayannis A, Tsamis E, Stringa F, Cole T, D'Souza Y, et al. New Findings in Diabetic Maculopathy and Proliferative Disease by Swept-Source Optical Coherence Tomography Angiography. OCT Angiography in Retinal and Macular Diseases 2016;56:113-21.

9. Di G, Weihong Y, Xiao Z, Zhikun Y, Xuan Z, Yi Q, et al. A Morphological Study of the Foveal Avascular Zone in Patients with Diabetes Mellitus Using Optical Coherence Tomography Angiography. Graefe's Archive for Clinical and Experimental Ophthalmology 2016;254:873-9.

10. Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography. Investigative ophthalmology & visual science 2016;57(9):OCT362-OCT70.

11. Cennamo G, Romano MR, Nicoletti G, Velotti N, de Crecchio G. Optical Coherence Tomography Angiography Versus Fluorescein Angiography in the Diagnosis of Ischaemic Diabetic Maculopathy. Acta ophthalmologica 2017;95(1):e36-e42.

12. De Carlo TE, Romano A, Waheed NK, Duker JS. A Review of Optical Coherence Tomography Angiography (Octa). International journal of retina and vitreous 2015;1:1-15.

13. Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, VanderBeek BL, et al. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes care 2017;40(3):412.

14. Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology 2018;125(10):1608-22.

15. Ashraf Khorasani M, G AG, Anvari P, Habibi A, Ghasemizadeh S, Ghasemi Falavarjani K. Optical Coherence Tomography Angiography Findings after Acute Intraocular Pressure Elevation in Patients with Diabetes Mellitus Versus Healthy Subjects. J Ophthalmic Vis Res 2022;17(3):360-7.

16. Boned-Murillo A, Diaz-Barreda M, Ferreras A, Bartolomé-Sesé I, OrdunaHospital E, Montes-Rodríguez P, et al. Structural and Functional Findings in Patients with Moderate Diabetic Retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology 2021;259:3625-35.

17. Goebel W, Kretzchmar-Gross T. Retinal Thickness in Diabetic Retinopathy: A Study Using Optical Coherence Tomography (Oct). Retina 2002;22(6):759-67.

18. Asefzadeh B, Fisch BM, Parenteau CE, Cavallerano AA. Macular Thickness and Systemic Markers for Diabetes in Individuals with No or Mild Diabetic Retinopathy. Clinical & experimental ophthalmology 2008;36(5):455-63.

19. Chalam KV, Bressler SB, Edwards AR, Berger BB, Bressler NM, Glassman AR et al. Retinal Thickness in People with Diabetes and Minimal or No Diabetic Retinopathy: Heidelberg Spectralis Optical Coherence Tomography. Investigative ophthalmology & visual science 2012;53(13):8154-61.

20. Network DRCR. Relationship between Optical Coherence Tomography– Measured Central Retinal Thickness and Visual Acuity in Diabetic Macular Edema. Ophthalmology 2007;114(3):525-36.

21. Han R, Gong R, Liu W, Xu G. Optical Coherence Tomography Angiography Metrics in Different Stages of Diabetic Macular Edema. Eye and Vision 2022;9(1):14.

22. Panozzo G, Cicinelli MV, Augustin AJ, Battaglia Parodi M, Cunha-Vaz J, Guarnaccia G, et al. An Optical Coherence Tomography-Based Grading of Diabetic Maculopathy Proposed by an International Expert Panel: The European School for Advanced Studies in Ophthalmology Classification. European journal of ophthalmology 2020;30(1):8- 18.

23. Trento M, Durando O, Lavecchia S, Charrier L, Cavallo F, Costa MA, et al. Vision Related Quality of Life in Patients with Type 2 Diabetes in the Eurocondor Trial. Endocrine 2017;57:83-8.

24. De Clerck EE, Schouten JS, Berendschot TT, Kessels AG, Nuijts RM, Beckers HJ, et al. New Ophthalmologic Imaging Techniques for Detection and Monitoring of Neurodegenerative Changes in Diabetes: A Systematic Review. The Lancet Diabetes & endocrinology 2015;3(8):653-63.

25. Brown JC, Solomon SD, Bressler SB, Schachat AP, DiBernardo C, Bressler NM. Detection of Diabetic Foveal Edema: Contact Lens Biomicroscopy Compared with Optical Coherence Tomography. Archives of ophthalmology 2004;122(3):330-5

26. Browning DJ, Fraser CM, Clark S. The Relationship of Macular Thickness to Clinically Graded Diabetic Retinopathy Severity in Eyes without Clinically Detected Diabetic Macular Edema. Ophthalmology 2008;115(3):533-9. e2.

27. Sugimoto M, Sasoh M, Ido M, Wakitani Y, Takahashi C, Uji Y. Detection of Early Diabetic Change with Optical Coherence Tomography in Type 2 Diabetes Mellitus Patients without Retinopathy. Ophthalmologica 2005;219(6):379-85.

28. Ong JX, Kwan CC, Cicinelli MV, Fawzi AA. Superficial Capillary Perfusion on Optical Coherence Tomography Angiography Differentiates Moderate and Severe Nonproliferative Diabetic Retinopathy. PLoS One 2020;15(10):e0240064.

29. Yu S, Pang CE, Gong Y, Freund KB, Yannuzzi LA, Rahimy E, et al. The Spectrum of Superficial and Deep Capillary Ischemia in Retinal Artery Occlusion. Am J Ophthalmol 2015;159(1):53-63.e1-2.

30. Veiby NC, Simeunovic A, Heier M, Brunborg C, Saddique N, Moe MC, et al. Associations between Macular Oct Angiography and Nonproliferative Diabetic Retinopathy in Young Patients with Type 1 Diabetes Mellitus. Journal of Diabetes Research 2020;2020.

31. Bhanushali D, Anegondi N, Gadde SG, Srinivasan P, Chidambara L, Yadav NK, et al. Linking Retinal Microvasculature Features with Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2016;57(9): Oct519- 25.

32. Chen Q, Ma Q, Wu C, Tan F, Chen F, Wu Q, et al. Macular Vascular Fractal Dimension in the Deep Capillary Layer as an Early Indicator of Microvascular Loss for Retinopathy in Type 2 Diabetic Patients. Investigative ophthalmology & visual science 2017;58(9):3785-94.

33. Rodrigues TM, Marques JP, Soares M, Simão S, Melo P, Martins A, et al. Macular Oct-Angiography Parameters to Predict the Clinical Stage of Nonproliferative Diabetic Retinopathy: An Exploratory Analysis. Eye 2019;33(8):1240-7.

34. Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative Retinal Optical Coherence Tomography Angiography in Patients with Diabetes without Diabetic Retinopathy. Investigative ophthalmology & visual science 2017;58(1):190-6.

35. Ryu G, Kim I, Sagong M. Topographic Analysis of Retinal and Choroidal Microvasculature According to Diabetic Retinopathy Severity Using Optical Coherence Tomography Angiography. Graefe's Archive for Clinical and Experimental Ophthalmology 2021;259:61-8.

36. Choi W, Waheed NK, Moult EM, Adhi M, Lee B, De Carlo T, et al. Ultrahigh Speed Swept Source Optical Coherence Tomography Angiography of Retinal and Choriocapillaris Alterations in Diabetic Patients with and without Retinopathy. Retina 2017;37(1):11-21.

37. Cao D, Yang D, Huang Z, Zeng Y, Wang J, Hu Y, et al. Optical Coherence Tomography Angiography Discerns Preclinical Diabetic Retinopathy in Eyes of Patients with Type 2 Diabetes without Clinical Diabetic Retinopathy. Acta Diabetol 2018;55(5):469-77.

38. Conti FF, Qin VL, Rodrigues EB, Sharma S, Rachitskaya AV, Ehlers JP, et al. Choriocapillaris and Retinal Vascular Plexus Density of Diabetic Eyes Using Split-Spectrum Amplitude Decorrelation Spectral-Domain Optical Coherence Tomography Angiography. British Journal of Ophthalmology 2019;103(4):452-6.

39. Cao J, McLeod S, Merges CA, Lutty GA. Choriocapillaris Degeneration and Related Pathologic Changes in Human Diabetic Eyes. Arch Ophthalmol 1998;116(5):589-97.

Downloads

Published

21-07-2024

Issue

Section

Original Research Articles

How to Cite

1.
Soliman M, Gebri M. Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography-Angiography in Diabetic Patients. Journal of Medical Sciences [Internet]. 2024 Jul. 21 [cited 2025 Aug. 20];8(1):1-14. Available from: https://journals.tu.edu.ly/tujms/index.php/jms/article/view/3